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We present a Monte Carlo study of the effect of perturbations on critical or 
nucleation droplets in both classical and spinodal nucleation. Locating the 
saddle point with an intervention technique, we determine that the effect of 
perturbations at the saddle point depends on their location in the droplet. We 
find that the most effective perturbations occur at the location of the maximum 
growth rate where the droplet is allowed to nucleate and grow unperturbed. 
Moreover, the decay of sufficiently perturbed droplets follows a path that can 
be best characterized as a growth mode in reverse, specifically the decay of 
classical droplets is at the surface and that of spinodal droplets at the center 
independent of the location of the perturbation. 
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1. I N T R O D U C T I O N  

Transitions between the various phases accessible to matter are some of the 
most fascinating macroscopic events in nature. In particular, considerable 
effort has been devoted to understanding the dynamics of first-order phase 
transitions, i.e., metastability, nucleation, spinodal decomposition, late- 
stage growth, and coarsening. (1) In spite of extensive experimental and 
theoretical studies of first-order phase transitions, a complete theoretical 
understanding of this phenomenon does not as yet exist. In the case of 
metastability and homogeneous nucleation, a great deal of progress has 
been made, (2 6) and many features and predictions of theory have been 
verified.(7 9~ However, there is little understanding of heterogeneous nuclea- 
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tion and the decay of systems very close to the limit of stability of the 
metastable state, i.e., the Becker-D6ring limit. Heterogeneous nucleation is 
a technologically important process which is initiated by the presence of 
impurities and defects. To understand this process, it is necessary to 
examine the manner in which the nucleation mechanism is altered by the 
presence of these impurities. 

In this paper we present a phenomenological approach to homogeneous 
nucleation which could potentially serve as a starting point for the study 
of some forms of heterogeneous nucleation. In our approach, defects and 
impurities are viewed as general perturbations and we study the effects of 
such perturbations on the nucleating droplet. This is in contrast to the 
treatment of impurities as objects that cause a reduction in the free energy 
barrier to nucleation. Our immediate goal is to obtain information about 
the effect of perturbations on the growth of critical droplets near the saddle 
point that separates the stable and metastable regions of phase space. Our 
long-range goal is to understand the effect of perturbations throughout the 
nucleation and growth process. This study also tests in considerable detail 
the accuracy of the saddle point description (2-4) of nucleation and probes 
the role of structures present in the system before the occurrence of the 
critical droplet. 

The structure of the remainder of this paper is as follows. In Section 2 
we briefly outline the theoretical predictions of nucleation and early-stage 
growth found in refs. 2-4. In Section 3 we describe our model and numeri- 
cal technique. In Sections 4 and 5 we present our numerical results and 
finally discuss our results in Section 6. 

2. THEORETICAL B A C K G R O U N D  

The approach we take was developed in refs. 2 4 .  We treat the 
metastable state essentially as an equilibrium state, which requires a certain 
amount of justification. The interested reader is referred to ref. 3. The aim 
is to calculate the partition function z, 

z = f 6~b exp{ -/?H(~b) } (2.1) 

where the integral is over all function ~b,/~ is the inverse temperature, and 

H((~)= f dx{[RV(~(x)]2 +eO2(x)+~a(x)-hO(x)} (2.2) 

In Eq. (2.2), e = ( T -  Tc)/Tc, Tc is the critical temperature, h is an applied 
magnetic field, and R is the range of interaction of the potential. The 
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function H(~b) is the standard Landau-Ginsburg Hamiltonian. (1~ In the 
metastable state e < 0. 

The critical or saddle point droplet is associated with the solution of 
the Euler-Lagrange equation obtained from functionally differentiating 
H(~b) and setting the derivative equal to zero. (3/ That is, 

R z v 2 q ~ ( x )  - -  2 ]el ~b(x) + 4 q ~ 3 ( x )  - h = 0 (2.3) 

for ~b(x)= ~bc(x ) and we have made the minus sign in e explicit. 
Near the coexistence curve (h ~ 0) and far from the critical point the 

critical droplet ~bc(x) has the classical structure, an interior that is similar 
to the stable phase, and a sharp interface. Following Langer, (3) we can 
describe the initial growth of the droplet away from the saddle point by 
linearizing Eq. (2.3) around ~bc(x) and obtaining the eigenvector associated 
with the negative eigenvalue of the operator 

RZV2u(x) - 2 lel u(x) + 12~b2(x) u(x) = 2u(x) (2.4) 

For classical droplets the eigenvector, from Eq. (2.4), associated with the 
negative 2 is peaked at the surface of the droplet./3'1~ This implies that the 
classical droplets grow by adding matter to their surface. 

For systems with long-range interactions (R >> 1) we expect mean field 
theory to be correct (m and hence the metastable state ends at a 
spinodal. (4'12) The spinodal is a line of critical points (~2) at which the sur- 
face tension vanishes. This leads to a significant modification in the form 
of the critical droplet near the spinodal. (4'5) We can modify the saddle 
point approach to work near the spinodal by introducing a new field 

~ ( x )  = ~ (x )  - ~ p  (2.5) 

The quantity ~bsp is the value of ~b at the spinodal and can be obtained from 
the Landau-Ginsburg Hamiltonian [Eq. (2.2)] by assuming ~b(x)= ~b is a 
spatial constant and making the mean field assumption that H(~b) is a free 
energy. The Landau-Ginsburg free energy per spin f(~b) is 

f(~b) = -le] ~b 2 + ~b 4 - h~b (2.6) 

For fixed ~, ~bsp is located by equating the second derivative off(~b) with 
respect to ~b equal to zero. The value of h at the spinodal, h s p  , is obtained 
by setting the first derivative of f (~)  with respect to ~b equal to zero at 

We now insert 

r  = 4,(x) + r (2.7) 
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into Eq. (2.2) to obtain, near the spinodal, 

 q(O) = I d,,{ [RVO(x)] 2 +  hO(x) (2.8) 

where Ah = h s - h ,  c~ is a constant which does not vanish at the spinodal, 
and we have neglected the 04(x) term since 0(x) ~ 1 near the spinodal. (2"4/ 

Following the same procedure as in the classical case, we obtain the 
critical droplet by solving the Euler-Lagrange equation obtained from the 
functional differentiation of Eq. (2.8). The critical droplet near the spinodal 
is seen to be diffuse (4'9/ with no distinction between the interior and the 
surface. Moreover, one can map the thermal critical phenomenon problem 
onto a percolation transition (4'13'14~ and show that the critical or nucleating 
droplet is a fractal. ~14'15~ 

Using the same technique to describe the early stage of growth as was 
used in the classical case, we linearize the Euler-Lagrange equation about 
the critical droplet to obtain an eigenvalue problem. As before, the eigen- 
vector associated with the negative eigenvalue describes the early stage of 
growth. In contrast to the classical case, where the eigenvector indicates 
growth at the droplet surface, the eigenvector near the spinodal is peaked 
at the center of the droplet. This indicates that the early stage growth is a 
filling in of the droplet. (5'8'9) 

This brief outline of the theory should be enough to understand the 
numerical results described in Sections 4 and 5. The reader interested in 
further detail is referred to refs. 2-15, particularly ref. 3 for the classical 
theory and ref. 5 for the spinodal. 

3. N U M E R I C A L  TECHNIQUE A N D  M O D E L  

We studied the effect of perturbations on the growth mode of a 
nucleating droplet using Monte Carlo methods. The simulations were per- 
formed on a two-dimensional system of Ising-like spins, with 160,000 sites. 
In order that the model exhibit a first-order phase transition as a function 
of the temperature, the spin-down state is chosen to be doubly degenerate. 
The Hamiltonian for such a system is given by 

J F -  k T l n  2 
H =  - ~  Z ~riaJ 2 Z o-i (3.1) 

(i, j )q  i 

where o-~ = -t-1, J is the coupling constant, F is the energy gap between the 
spin states (the quantity F - k T l n  2 can be interpreted as a temperature- 
dependent effective field), q is the number of nearest-neighbor sites, and 
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(i, j)q indicates the appropriate sum over these sites. The model of Eq. (3.1) 
exhibits a first-order phase transition at a temperature 

F /,. qr~ (3.2) 
~lj- = In 2 

provided T s is less than the critical temperature of the related zero-gap, 
nondegenerate Ising model. We used a Creutz microcanonical Monte Carlo 
algorithm, (16) where the total energy is conserved, and a "hopping" (not 
diffusive) demon redistributes the energy among the sites which are visited 
at random. The metastable phase is represented by a lattice configuration 
mostly composed up spins, whereas a configuration of mostly down spins 
represents the stable phase. Figure 1 displays the phase diagram for our 
model obtained from a mean field approximation. (9) The phase diagram is 
in terms of fl = 1/kT [units of (qJ)-l] and E, where E is the energy per 
spin in units of qJ. It is important to note that this is not a conventional 
phase diagram, but a phase diagram generated on the basis of a 
microcanonical ensemble. It can easily be converted to a phase diagram 
associated with a canonical ensemble via the transformation between 
energy and magnetization (see ref. 9 for details). The gap energy F is taken 
to be F=0.27qJ,  which corresponds to a fist-order phase transition tem- 
perature of kT~ = 0.39qJ [see Eq. (3.2)]. We study two cases: a system with 
a short-range interaction (lattice coordination number q = 4), for quenches 
(A, B, C, D, and E) reasonably close to the coexistence curve, and a system 
with a long-range interaction (q = 684), quenched reasonably close to the 
spinodal (quench G). The coordination number q is a measure of the inter- 

r e 

Fig. 1. Phase  d i ag ram in terms of the inverse the rma l  energy fl vs. the energy per  spin e for 
a gap  energy F=O.27qJ and  J is t aken  as q/lO00. Stable branches  (sol id lines), me tas t ab le  
branches  (dashed  lines), and  uns tab le  b ranch  (dot ted  l ine) as well as the coexistence curve for 

a t rans i t ion  t empera tu re  kTf = 0.39 is shown. Trans i t ion  A is for q = 4 and e = 40, t rans i t ion  

B is for q = 4  and  e = 4 1 ,  t rans i t ion  C is for q = 4  and  e = 4 5 ,  t rans i t ion  D is for q - 4  and  

e = 50, t rans i t ion  E is for q = 4 and  e = 55, t r ans i t ion  F is for q = 12 and  e = 70, and  t rans i t ion  
G is for q = 684 and  e = 370. 
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action range as each spin interacts with q neighbors. The strength of the 
interion is scaled with q so that the energy per spin remains finite as q ~ oe. 
The details of this model for large q are presented in ref. 9. 

The onset of nucleation was determined in two ways. First we 
monitored the center of mass (81 of the largest spin-down cluster present in 
the system using the correlated site-random bond clusters of Coniglio and 
Klein.(4,13,~4) As mentioned in the previous section, this method maps Ising 
models including critical points and the spinodal in mean field onto a 
correlated site-bond percolation problem, thereby allowing us to identify 
correlated clusters of identical spins with thermal fluctuations. Near the 
spinodal, the theory predicts (4) that nucleation is initiated by the critical 
phenomenon fluctuations associated with the spinodal critical point. We 
identify the occurrence of a nucleating cluster as the point at which the 
location of the center of mass of the largest of the clusters associated with 
spinodal fluctuations ceases to exhibit large fluctuations, i.e., when the fluc- 
tuations in the position of the droplet center of mass are within the droplet 
correlation length. For the classical case we use the same method with the 
same cluster definition. Away from critical points these percolation clusters 
are compact and the identification of the classical critical droplets with 
these clusters gives good agreement in measurement of nucleation rates 
near the coexistence curve. (17) We refer to this precedure as the center-of- 
mass method and it is described in detail in ref. 9. 

If, however, we define the onset of nucleation with the appearence of 
a saddle point structure, (2-4) then the center-of-mass method is not suf- 
ficient. The saddle point structure is roughly a droplet that just makes it to 
the top of the saddle point separating the stable and metastable states in 
phase space. (3~ We can identify this droplet by using the fact that a saddle 
point structure should initiate the decay of the metastable state in only 
50% of trials. In the other half of the trials the saddle point structure itself 
should decay and the system remain in the metastable state. 

We identify the saddle point structure or droplet by using the interven- 
tion method in conjunction with the center-of-mass method. The interven- 
tion technique involves stopping the simulation when a large and stable 
spin-down cluster is present in the system, changing the random number 
seed, and restarting the simulation. The largest cluster is subsequently 
monitored until it decays or grows. This process is repeated several times 
with the same initial simulation. The saddle point droplet is taken to be the 
cluster which, in a reasonable number of such trials, decayed in roughly 
half of these trials. If the trial cluster decays in more than 50% of the tests, 
the original simulation is allowed to proceed further before the intervention 
takes place. If the trial cluster decays less than 50% of the time, the inter- 
vention is tried earlier in the simulation. These two criteria for nucleation, 
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the center-of-mass method and the intervention method, give the same 
result for the time of nucleation near the spinodal, but quite different 
results in the classical case. We discuss these results in the next section. 

4. N U M E R I C A L  RESULTS; T I M E  LAG 

The center-of-mass and the intervention method give similar results for 
the occurrence of a critical droplet for systems with tong-range interactions 
(q = 684) near the spinodal. However, far from the spinodal for both long- 
and short-range interactions (q = 4) the center-of-mass method leads to the 
conclusion that there is a stable monotonically growing structure in the 
system long before the saddle point is reached. That is, "center-of-mass 
nucleation" occurs much earlier than nucleation as determined by the 
intervention method. 

We studied the "time lag" between nucleation as determined by the 
two methods for various quench depths (q = 4 for quenches A, B, C, D, 
and E; q = 12 for quench F; and q = 684 for quench G) and the results are 
summarized in Table I. We observe that the time lag between nucleation 
events as determined by the two methods decreases as the quench depth 
increases. We postulate that this effect is due to the compact structure of 
classical nucleating droplets as opposed to the fractal nature of the droplets 
near the spinodal. (4'9'15) The center-of-mass method far from the spinodal, 
where classical nucleation is expected, (4'9'18) appears to measure the 
occurrence of an apparently stable compact cluster well before that cluster 
becomes the saddle point (nucleating) droplet. In other, words a monotoni- 
cally growing cluster dominates the system in the sense that it will remain 
the largest cluster for the remainder of the run, long before that cluster 
reaches the saddle point. 

Table I. 

Energy Coordination number q Lag time Average size ( s )  Number of trials 

40 4 480 230 1 a 
41 4 230_+30 180_+ 11 3 a 
45 4 125 + 30 114 _+ 10 5 
50 4 98 _+ 19 103 __ 10 5 
55 4 32 _+ 12 79 _+ 14 5 
70 12 ~ 10 - -  5 

370 684 ~ 0  - -  5 

a Fewer than five trials due to the long waiting times for the onset of nucleation. 
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We did not observe this effect near the spinodal. We believe that this 
is due to the increasingly diffuse nature of the droplets present in the 
system. The center-of-mass method does not indicate the occurrence of a 
stable structure in the system prior to a saddle point droplet because a 
fractal object is more easily destroyed by thermal fluctuations than a 
compact object. Close to the spinodal, the first appearance of a stable 
monotonically growing cluster will coincide with the system reaching the 
saddle point or the diffuse droplet will be destroyed by fluctuations. We 
believe that the diffuse nature of the critical droplet is the reason that both 
methods, center of mass and saddle point, agree with each other as the 
quench depth increases. 

If the time lag can be explained in terms of the structure of the 
nucleating droplet, we then propose that this effect can be treated as a 
signature of classical nucleation and can be used as an additional criterion 
in computer simulations where the exact nature of the nucleation 
phenomenon taking place (i.e., whether it is classical or nonclassical) has 
not been determined. In order to verify that the existence of this "time lag" 
is not an artifact of the Creutz algorithm, we measured the "time lag" for 
quench C (see Fig. 1 ) using a Glauber algorithm. The results were found to 
be the same as those displayed in Table I. 

5. NUMERICAL RESULTS; PERTURBATIONS 

We turn now to the question of the effect of perturbations on the 
saddle point droplet. In this section the term droplet will always refer to 
the saddle point nucleation event. 

Several perturbations were used to test the stability of nucleating 
droplets for both q = 4 (quench C) and q = 684 (quench G) in Fig. l. They 
all consist of removing down spins in a circular shell located at a distance 
r from the center of mass of the droplet. The number of spins removed 
from the system remains constant for each shell and consequently the 
thickness of the shell depends on its distance from the center of mass of the 
droplet (see Fig. 2). Figure 3 shows the measured density profile of the 
nucleating droplets as determined by the intervention method for (a) q = 4 
and (b) q = 684 near the spinodal, respectively. The bars of the histogram 
superimposed on the density profile represent the fraction of the trials in 
which the droplet decayed due to a perturbation. This fraction was rescaled 
by factor of �89 (with a random perturbation, the nucleating droplet should 
decay in a fraction f =  �89 of the trials) and renormalized to an arbitrary 
height. The location of a particular bar of the histogram indicates the loca- 
tion of the corresponding perturbation shell. Since the perturbation shells 
become very narrow at large distances from the center of the droplet, many 



Effect of Perturbations on Critical Droplets 125 

shells in a given interval were averaged into a single bar of the histogram. 
Finally, each bar of the histograms represents 10 trials for q--4  and 16 
trials for q = 684. 

We compare Figs. 3a and 3b to the numerical solution of the predicted 
eigenvector from the theory, (~~ which is reproduced in Fig. 4. The 
qualitative agreement between the features of the numerical solution and 
our results is excellent, except for the noise in the density profile of Fig. 3b 
for regions close to the center of the droplet. This noise is due to the 
relatively small area of the annul~ over which the density average was taken 
near the droplet center. As an example of the agreement between the eigen- 
vector interpretation and the numerical results, in Fig. 4 the eigenvector in 
classical nucleation extends well beyond the classical droplet profile, but its 
amplitude becomes extremely weak. A corresponding feature of all our 
simulation results is that the classical nucleating droplet is not very sen- 
sitive to perturbation of its exterior. Moreover, the histogram data in 
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Fig. 2. Example of a peturbation [2-3]. The top figure represents the unperturbed nucleat- 
ing droplet. The bottom figure represents the same nucleating droplet after the perturbation 
[ 2 - 3 ]  w h e r e  al l  the  20 spins in the "diamond-shaped" ring between the distances r = r i + rj  = 2 

and r = ri + rj  = 3 inclusively have been removed. The subscripts i and j refer to the x and y 

directions. 



126 Monette et  al.  

Figs. 3a and 3b reproduce the shape of the eigenvector for classical and 
nonclassical nucleation, respectively. 

Consideration of these results leads us to propose the following inter- 
pretation of the role of the eigenvector in the decay processes of the 
nucleating droplet. The extent to which a perturbation destroys a nucleat- 
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Fig. 3. Semilog plots of the measured density profile of the nucleating droplets as determined 
by the intervention method in terms of the logarithm of the density versus the distance. 
(a) For quench C, (b) for quench G. The bars of the histograms superimposed on the density 
profile plot, which have been rescaled to an arbitrary height, represent the fraction f of the 
trials in which the droplet decayed due to a perturbation. The largest histogram bar in each 
figure corresponds to case when all the perturbed droplets decayed. A given perturbation 
involved removing a total of 13 spins in (a) and a total of 52 spins in (b). The fraction f was 
rescaled to an arbitrary height independent of the y axis of these plots. The x coordinate of 
a particular bar of the histogram represents the location of the "ring" from which the down 
spins are removed. Bars of the histogram far away from the center of the droplet represent an 
average over many neighboring "rings." Each bar of the histogram represents an average over 
16 trials in both (a) and (b) and the relative heights represent the relative efficiency, above a 
random perturbation, of the controlled perturbation. 
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Fig. 4. 

, h . o .m ,  

= 1 4 s e 

Plot of the profiles of the nucleating droplet (solid line) and the growth mode 
(dashed line) in three dimensions. 

ing droplet is related to its projection onto the predicted eigenvector. For 
instance, a perturbation located at the interface of a classical nucleating 
droplet is most effective, while the same perturbation (same number of 
spins removed) located at the center is statistically much less effective than 
at the interface and a perturbation located outside the droplet is statisti- 

z 

-2-" 

Fig. 5. (a) The eigenvector for a classical saddle point droplet. (b) Schematic illustration of 
the applied perturbations as a function of distance away from the center of the droplet. 
(c) Illustration of the effective perturbation p~(x), i.e., p(x) in b) projected onto the eigen- 
vector r/(x) in (a). 

822/66/ '1-2-9 



128 Monette et  al, 

cally even less effective. Similarly, a perturbation of the center of a non- 
classical (spinodal) droplet is most effective, while a perturbation far away 
from the center has very little effect. 

Figure 5 schemati~ illustrates the above statement. Figure 5a shows 
the shape of the eigenvector as a function of the distance from the center 
of mass of the droplet for classical nucleation and Fig. 5b gives the original 
perturbation as a function of the distance from the center of mass of the 
droplet. The equal height of the bars implies that the number of spins 
removed remains constant as a function of distance. Figure 5c shows the 
actual sensitivity of the droplet to the applied perturbation shown in 
Fig. 5b, as "controlled" by the shape of the corresponding eigenvector of 
Fig. 5a. 

Put in a concise form, we propose that the effect of a perturbation Pc, 
is roughly proportional to 

pelf(r) cc f dr p(r) rt(r) 

tO~ I - -  

~O0 

~.oq(S~z~} vs lag(Rqyr} Q~i L'40Q 

f t .  

(5.~) 

I0 
(hi 

Iog<stzl) ~s la~CR~') q=684 L=400 

t ~ 

~176 
t 

�9 ~ , ~  

. . .  

Fig. 6. Initial growth mode of the nucleating droplet in terms of a plot of the logarithm of 
the total mass of the droplet S as a function of the logarithm of its radius of gyration Rgyr. 

(a) For quench C, b) for quench G. 
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where p(r) symbolizes a spherically symmetric perturbation, r is measured 
from the center of the nucleating droplet, and t/(r) represents the eigen- 
vector. The above relation is only qualitative. However, it may be useful as 
a starting point in the study of some forms of heterogeneous nucleation. 

The eigenvector not only indicates where a perturbation of a given size 
is most efficient, but it also appears to indicate the mode of decay of the 
perturbed droplet. In Langer's description (3) of early-stage growth in classi- 
cal nucleation, the peak of the eigenvector is at the surface of the droplet 
(see Fig. 4). In Fig. 6a the log of the mass of the critical droplet is plotted 
as a function of the radius of gyration of the droplet. Each point from the 
lower left to the upper right of the figure is taken at a later time. If the 
droplet is growing classically, this plot should be a straight line with slope 
d, the spatial dimension. The slope of the line in Fig. 6a is 2, which is the 
spatial dimension used in the simulation�9 In spinodal nucleation the eigen- 

IogCStze) vs lo~(Rgyr) q,4 L-~O~ [0-21 

.,~ 

.m 

~ 

I0 iO 

(a) Iocj~) 

I00 

log(Size) v$ Iog(Rgyr) q=& L,400 (10- [ I ]  

/ 
~ 

Fig. 7. Plots of the logarithm of the size of droplet C (q = 4, e = 45) vs. the logarithm of its 
radius of gyration. (a) For  a perturbation around the center ([0-2]) ,  (b) for a perturbation 
around the interface ([10-11]).  Both plots display a slope of 2, and they have been averaged 
over 5 trials. 
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vector is peaked in the center (Fig. 4), which indicates that the growth 
should be a filling-in process�9 In Fig. 6b we plot the log of the droplet mass 
vs. the log of the radius of gyration for a droplet near the spinodal. The 
initial growth is a large increase in mass with almost no change in the 
radius of gyration. As above, each point from lower left to upper right 
represents a later time. This figure is in qualitative agreement with the 
theory. 

In Fig. 7 we plot the decay of a classical droplet. In this figure time 
runs from the upper right-hand corner to the lower left. Again we show the 
mass of the droplet as a function of the radius of gyration. As with the 
growth in Fig. 6a, we have a straight line with slope 2, indicating that the 
decay is occurring at the surface independent of the location of the perturba- 
tion. Figure 7a corresponds to a perturbation at the center, while Fig. 7b 
results from a perturbation at the interface�9 

In Fig. 8 we have a similar plot for spinodal nucleation. As with 
growth near the spinodal, the decay occurs at the center of the droplet 

1000 
tog(SiZe) ~ ::g*Rgyr) q;58& L=4OO [0-!0] 

IQ 
(a) 

I00(1 

~ 

�9 �9 

i .  t 

o ~  ~ 

�9 

R 

I ~ g ~ S t z l )  ~ I o ~ ( R g y ~ )  q ~ 6 f l l  C ~ O 0  [ T f l - f l O ]  
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: ' , , "  
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R 

Fig. 8. Plots of the logarithm of the size of droplet G (q = 684, e = 370) vs. the logarithm of 
its radius of gyration. (a) For  a perturbation around the center ( [ ~ 1 0 ] ) ,  b) for a perturba- 
tion around the end part of the interface ([70-80]) .  Both plots have been averaged over 
5 trials. 
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independent of the location of the perturbation. Figure 8a results from a 
perturbation at the droplet center, while Fig. 8b shows the effect of a 
perturbation near the outer edge. 

Similar results to those presented in Figs. 7 and 8 were also obtained 
from runs using a Metropolis and a Kawasaki algorithm. ~18) These results 
imply that the location of the decay mode and its invariance with respect 
to the location of the perturbation are not affected by the conservation 
laws. 

6. CONCLUSIONS AND DISCUSSION 

Our results can be summarized as follows: In nucleation close to the 
coexistence curve in systems with either long- or short-range interactions, 
monotonically growing clusters can be identified long before they obtain 
the status of saddle point droplets. This does not appear to be true for 
nucleation near the spinodal, where the saddle point droplet is the first 
stable growing structure that can be identified. We attribute this difference 
to the compact structure of the droplets near the coexistence curve and the 
diffuse fractal structure of the droplets near the spinodal. Moreover, the 
time lag between the stabilization of the location of the center of mass and 
the saddle point decreases as the distance of the quench from the 
coexistence curve increases. 

We also examined the affect of perturbing droplets near the saddle 
point. We found that classical droplets decayed at the surface and spinodal 
droplets decayed at the center independent of the location of the perturba- 
tion within the droplet. However, the efficiency of the perturbation in 
destroying droplets did depend on its location within the droplet. Perturba- 
tions of the same number of spins were more efficient if located near the 
interface of a classical droplet rather than the center, while the reverse was 
true of spinodal droplets. 

We have not performed simulations to test the effect of adding rather 
than deleting spins from the critical droplet in the direction of the stable 
phase. However, the symmetry of the saddle point evident in the theoretical 
work of Langer (3) and the simulations performed in this work make it 
highly likely that such additions will result in an enhancement of nuclea- 
tion qualitatively similar to the reduction of nucleation seen here. 

The purpose of this work was to begin to investigate how the nuclea- 
tion process can be manipulated and how it might be affected by external 
influences. Clearly we are still a long way from an understanding of the 
effect of "dirt" in heterogeneous nucleation. We believe, however, that a 
thorough understanding of the role of droplet structure in the response to 
perturbations will be important for an understanding of this phenomenon. 



132 Monette e t  al. 

A C K N  O W L E D G  M ENTS 

This  w o r k  was  s u p p o r t e d  by g ran t s  f r o m  the  O N R ,  N S F ,  N S E R C  and  

the  F C A R  du  Qu6bec .  

R E F E R E N C E S  

1. J. D. Gunton, M. San Miguel, and P.S. Sahni, in Phase Transitions and Critical 
Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983). 

2. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28:256 (1958). 
3. J. S. Langer, Ann. Phys. 41:108 (1967). 
4. W. Klein and C. Unger, Phys. Rev. B 28:445 (1983). 
5. C. Unger and W. Klein, Phys. Rev. B 29:2698 (1984). 
6. K. Binder, Phys. Rev. A 29:341 (1984). 
7. D. Stauffer, A. Coniglio, and D. W. Heermann, Phys. Rev. Lett. 49:1299 (1982). 
8. D. W. Heermann and W. Klein, Phys. Rev. Lett. 50:1062 (1983). 
9. L. Monette, W. Klein, M. J. Zuckermann, A. Khadir, and R. Harris, Phys. Rev. B 

38:11607 (1988). 
10. C. Unger and W. Klein, Phys. Rev. B 31:6127 (1985). 
11. J. L. Lebowitz and O. Penrose, J. Math. Phys. 7:98 (1966). 
12. D. W. Heermann, W. Klein, and D. Stauffer, Phys. Rev. Lett. 49:1261 (1982). 
13. A. Coniglio and W. Klein, J. Phys. A 13:2775 (1980). 
14. W. Klein, in Computer Simulations in Condensed Matter Physics 3, D.P. Landau, 

K. K. Mon, and H. B. Schiitter, eds. (Springer-Verlag, Heidelberg, 1991). 
15. T. S. Ray and W. Klein, J. Stat. Phys. 31:891 (1990). 
16. M. Creutz, Phys. Rev. Lett. 50:1411 (1983). 
17. D. W. Heermann, A. Coniglio, W. Klein, and D. Stauffer, J. Stat. Phys. 36:447 (1984). 
18. L. Monette, Ph.D. thesis, Boston University, Boston, Massachusetts (1990). 


